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1 Structured SVM decomposition

This section details the decomposition of the structured SVM problem as presented in the
main paper (Section 3). The advantage of this decomposition is that the decomposed con-
straint set facilitates the optimisation. In the sequel, we describe the two steps necessary for
the transformation, while a short summary of the main paper’s notation is provided in Tab. 1.

Initial Ranking Problem. Recall that the initial optimisation problem for the ranking
function f. We follow the margin-rescaling approach of [4] which reads as

frréigo\\fllerCZéj, stf(AT) = f(A) = A(A],A) =& VATELT, VAEL\LT (1)
52 j=1

with slack variables &; for every positively annotated example {A}L}?:l and regularisation
parameter C, that trades data fit with model complexity. The loss has been defined as

B e Xarea(B(?L) NB(A:))
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which only depends on one argument. We refer to the main paper for a discussion of this
setup.

Step 1: Constraint Decoupling. We exploit the structure of the loss Eq. (2) to decompose
the constraint set of Eq. (1). The proposed decomposition builds on an algebraic transfor-
mation of the constraint set from f(A}) — f(A) > A(A) = &; to f(AT) +&; > f(A) +A(A)
which, of course, must still hold VA;FG LT, VA€ IL\IL*. The main observation is that each
side involves only A or A;“. Moreover, each sides provides a lower (upper) bound for the
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Table 1: Notation
a single bounding box (parametrisation)

a set of bounding boxes
the set of all sets of bounding boxes

Lt the set of all sets containing at least one object
Aj € L™ | aset containing at least one annotated object

N
g > >

B(A) | the bounding box for parametrisation A
®(A) | appearance descriptor for hypothesis set A
f:A— R | ranking function: provide a priority for hypothesis set A
g:A—{1,...,T} | task mapping to distinguish 7 different tasks.

other. We therefore obtain an equivalent optimisation problem
2 n
min +C ;
i, WP+C R g,

FA)+&>b VAT el*
St b>f(A)+A(A) VAEL\L'
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that explicitly captures the value b of these upper/lower bounds; note that the value b is part
of the optimisation, but it does not occur in the objective function. This step transformed the
pairwise constraints from the initial problem into simpler constraints which only depend on
one element. This is much in the spirit of binary SVMs, although the constraints for negative
examples are not allowed any slack.

Step 2: Multi-Task Ranking Function. Recall that with g(A) — {1,2,...,T} we denoted
the mapping of the bounding box set into different task IDs. Depending on the task ID we
will use a different linear function (wga),-) + by(s) and this is conveniently formalised as a
multi-task problem. The resulting whole multi-task ranking function is of the form

F(A) = (wy(a), P(A)) +by(a) “4)

with per-task weight vectors w, and bias terms b, as well as an appearance descriptor ®(A).
Substituting this expression into the optimisation problem Eq. (3) yields

: 2
W,,Z?é‘go,b;”w’” +c)j:¢, (5a)
Woapy PN +byary 2b =8 VAT ELT (5b)
<wq(A),<I>(A)> +byn) < b—A(A) VAEL\ILJF, (5¢)

which almost decomposes: solely the variable b induces a coupling between the tasks. We
further observe that the constraints in fact depend only on the differences b, — b. This differ-
ence is translation invariant, i.e., adding a fixed constant to all b, and b does not affect the
solution. In other words, the problem is under-constraint and we are free to add one addi-
tional constraint to make the optimal solution unique. We choose the constraint » = 0 which
eliminates the inter-task coupling. Let us point out that we do not alter the constraint set, we
only made a choice of the function class over which we optimise.
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Final Optimisation Problem. It remains to group all summands of the objective, the ex-
amples, and constraint by their task ID. Doing so reveals the final optimisation problems

. 2
min ||w|[“+C i
i I+ X

(W, @A) +b, > —& VAT EL', g(Ah) =t vt ©)

that can be solved in isolation.

Discussion. We build on a well accepted ranking formulation [4], while the decomposition
exploits three reasonable assumptions that we discuss now. First, step 1 requires the loss to be
separable in the two argument, i.e., A(A},A) = u(A}) —v(A). Such losses arise in practise
(e.g. [1]), but this is not always the case (e.g., slack-rescaling). Second, step 1 also requires
that the constraint set includes all pairs of positive/negative examples. This is the natural
approach in an object-class detection setup, since we do not distinguish particular object
instances. Third, step 2 exploits the per-task bias terms. Choosing an appropriate function
class (over which we optimise) is legitimate option when modelling a problem. In summary,
we make three reasonable assumption that allow to transform a structured (ranking) SVM
problem into multiple simpler problems which are similar to binary SVMs.

2 VOC 2007 AP computation artefact

The VOC 2007 implementation [2] for computing the average precision (AP) score has an
artefact that manifests itself in the low AP regime.! In particular, AP scores around 10%
have to be read with care: a method with lower AP can in fact be better (c.f. Fig. 1). In such
cases, looking at the results of all challenge contestants (not only the per-class best ones),
we found that AP<10% are not uncommon. Moreover, the (apparently big) gap to the best
method is often due to the artefact that we will detail now.

As a matter of fact, an AP of 1/11 ~ 9% is obtained if the best-scoring detection is a
true positive even if it is the only one or all other detection are false positives. This effect is
particularly visible in the case of class bird (see Fig. 1) and the reason for the large variance
of AP in as can be seen on the official VOC website [2]. MPI_ESSOL and UoCTTI achieve
much higher AP than the other contestants, although their precision recall curves (PRC)
appear even worse than those of others (e.g., INRIA_PlusClasses). This phenomenon is
explained by the fact that these methods’ best detection is a true positive (i.e., their PRC start
with precision=1, e.g., blue curve in the figure).

The artefact is due to a coarse sampling used to compute the AP. The matlab code frag-
ment (directly copy-pasted from the VOCdevkit, VOCevaldet.m) is listed in Fig. 2. For the
sake of brevity, we omit the code that identifies true/false positive detections (among all
reported ones) and only list the final part that computes the AP. The input are two arrays
reporting precision (prec) and recall (rec) for various detection-score thresholds. The arte-
fact discussed earlier is due to the first sampling position # = 0. In that case line 5 becomes
max (prec(rec >=0)) which is the highest precision ever reached. Hence, if the best-scoring
detection is a true positive this value is 1 and the contribution in line 9 is the above mentioned

'The VOC evaluation score changed in 2010 [3], which removes the artefact described here. We chose to use
the 2007 version as it enables the comparison with the published results.
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Figure 1: Evaluation artefact. Official challenge results [2] for the class “bird”. IN-
RIA_PlusClasses (green) is probably the best performing detector in this plot. However,
according to the AP score, MPI_ESSOL (black) seems to be the top method. The plot shows
that MPI_ESSOL greatly benefits from the evaluation artefact.

1 % compute average precision
2 ap=0;

3 for t=0:0.1:1

4 p=max(prec(rec>=t));

5 if isempty(p)

6 p=0;

7 end

8 ap=ap+p/11;

9 end

Figure 2: Matlab code fragment from VOCdevkit 2007

1/11 =9%. Thus, getting the best-scoring detection correct makes a large difference in sit-
uation where the overall precision is quite low (as e.g. in the case of “bird”). For system
with larger AP this artefact seems not to have a crucial influence anymore. However, it is
not unlikely that this coarse sampling still also has some effects in such cases. We did not
analyse that in more detail though.

In conclusion, AP scores around 10% have to be read with care due to an implementation
artefact.
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